Journal of Materials Chemistry C Accepted Manuscript This article can be cited before page numbers have been issued, to do this please use: D. Zhou, D. Guo, W. Li, L. Pang, X. yao, D. Wang and I. M. Reaney, *J. Mater. Chem. C*, 2016, DOI: 10.1039/C6TC01431C. This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about *Accepted Manuscripts* in the **Information for Authors**. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains. # Novel temperature stable high- ϵ_r microwave dielectrics in the Bi₂O₃-TiO₂-V₂O₅ system Di Zhou, *a,b,c Dan Guo, a Wen-Bo Li, Li-Xia Pang, c,d Xi Yao, Da-Wei Wang, and Ian M. Reaney C ^aElectronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China ^bXi'an Jiaotong University Suzhou Academy, Suzhou 215123, Jiangsu, China ^cDepartment of Materials Science and Engineering, University of Sheffield, S1 3JD, UK ^dMicro-optoelectronic Systems Laboratories, Xi'an Technological University, Xi'an 710032, Shaanxi, China ^{*}Corresponding author. Tel (Fax): +86-29-82668679; E-mail address: zhoudi1220@gmail.com (Di Zhou) In the present work, a series of low temperature firing (1-x)BiVO₄-xTiO₂ (x=0.4, 0.50, 0.55 and 0.60) microwave dielectric ceramics was prepared using traditional solid state reaction method. From back-scattered electron images (BEI), X-ray diffraction (XRD) and energy dispersive analysis (EDS), there was negligible reaction between BiVO₄ and TiO₂ at the optimal sintering temperature \sim 900 °C. As x increased from 0.4 to 0.60, permittivity (ϵ_r) increased from 81.8 to 87.7, quality factor value (Qf) decreased from 12,290 to 8,240 GHz and temperature coefficient (TCF) shifted from -121 to +46 ppm/°C. Temperature stable microwave dielectric ceramic was obtained in 0.45BiVO₄-0.55TiO₂ composition sintered at 900 °C with a $\epsilon_r \sim$ 86, a Qf \sim 9,500 GHz and a TCF \sim -8 ppm/°C. Far-infrared reflectivity fitting indicated that stretching of Bi-O and Ti-O bonds in this system dominated dielectric polarization. This series of ceramics are promising not only for low temperature co-fired ceramic (LTCC) technology but also as substrates for physically and electrically small dielectrically loaded micro-strip patch antennas. Keywords: (Ceramics, Dielectrics) #### I. Introduction Microwave dielectric (MW) ceramics are widely used as dielectric resonators (DR), filters, substrates for radio frequency (RF) components and waveguides. 1,2 The driving force for development in MW ceramics depends on applications. For low temperature co-fired ceramics (LTCC) technology, the driving forces are compatibility with low cost electrodes (Ag, Cu, etc.) and reduced sintering temperatures. For resonators and filters, ultra-high quality factors (Qf> 40,000 GHz) are required to ensure selectivity to in a narrow frequency range and for dielectrically loaded antennas in handheld devices, reduction of size and cost of the component is critical.^{3,4} LTCC technology has played an important role in fabrication of modern microwave devices and requires materials with permittivity (ε_r) values between 10 -100, Of values > 5000 GHz, near-zero temperature coefficients of resonant frequency (TCF < ± 15 ppm/°C). Many low ε_r materials for LTCC technology have been developed and several are commercially available through companies such as Ferro and Dupont.^{5,6} However, materials with ϵ_r above 70 are rare. The classic method to develop LTCC materials is to add low melting point oxides or glasses to high Qf microwave dielectric ceramics to lower their sintering temperatures.^{3,7,8} The best known commercial high ε_r microwave dielectric ceramics are the BaO-RE₂O₃-TiO₂ (BRET, RE = La, Nd and Sm) system with properties of $70 < \varepsilon_r < 85$, 8,000 < Qf <12,000 GHz, and tunable TCF values near zero but these compositions can only be sintered above 1300 °C. 9-12 Moreover, their sintering temperatures cannot be lowered to below 1100 °C using sintering aids without decreasing ε_r to less than 70 accompanied by a significant deterioration in Qf values. 12 Bi₂Ti₄O₁₁-TiO₂ composites^{13,14} belong to the Bi₂O₃-TiO₂ binary system, in which there are five known single phase compounds: Bi₂Ti₄O₁₁; Bi₂Ti₂O₇; Bi₄Ti₃O₁₂; Bi₈Ti₄O₁₄ and Bi₁₂TiO₂₀ as shown in Fig. 1 (a). ^{15,16} Single phase Bi₂Ti₄O₁₁ ceramic was reported to possess a ε_r = 53.2, a Qf ~ 4,500 GHz (at 5 GHz), and a TCF = -550 ppm/°C. Temperature stable microwave dielectric ceramic with composition 0.919TiO₂-0.081Bi₂O₃, which is composed of TiO₂ and Bi₂Ti₄O₁₁, was found to possess a high $\varepsilon_r \sim 80$, a high Q (1800 at 5 GHz) and a TCF $\sim +21$ ppm/°C. ¹⁴ In our previous work, ¹⁷ CuO was used as sintering aid in 0.92TiO₂-0.08Bi₂Ti₄O₁₁ and it lowered the sintering temperature to 900 °C whilst maintaining a $\varepsilon_r = 81$, Qf value ~3,500 GHz and a TCF ~ -5.1 ppm/°C. Formation of semiconducting Cu₉Bi₂Ti₁₂O₃₆ was thought to be responsible for the reduction in Qf value. Valant et al. 18 also found nano-TiO₂ additions further improve Qf. Besides Bi₂Ti₄O₁₁, can sillenite-structured Bi₁₂TiO₂₀ ceramic was reported to possess a $\varepsilon_r \sim 41$, Qf between $3,300 \sim 10,400$ GHz, and TCF between $-2 \sim -10.8$ ppm/°C, according to Valant and Jeong et al.'s reports¹⁹⁻²¹ In Bi-rich part of the Bi₂O₃-V₂O₅ binary system, there are at least seven known phases, Bi_7VO_{13} , Bi_5VO_{10} , $Bi_{14}V_4O_{31}$, $Bi_7V_3O_{18}$, $Bi_6V_4O_{19}$, $BiVO_4$, and $Bi_2V_8O_{23}$, according to Touboul and Vachon's report. 22 Lv et al. studied this system via solid state reaction method²³ and based on their XRD analysis, five binary compounds: Bi_{8.1}V_{0.9}O₁₄, Bi₇VO₁₃, Bi₈V₂O₁₇, Bi₄V₂O₁₁ and BiVO₄were obtained along with two solid solutions: $xBi_2O_3:V_2O_5$ (5 $\le x\le 6$) and $(Bi_2O_3)_{1-x}(V_2O_5)_x$ (0 $\le x\le 0.069$). In the V-rich part, only a meta-stable Bi₂V₈O₂₃ was reported as shown in Fig. 1 (a). Among all the phases in the Bi₂O₃-V₂O₅ binary system, only BiVO₄ was reported to possess good microwave properties with a $\varepsilon_r \sim 68$, a Qf value between 6,500 $\sim 8,000$ GHz, and a TCF between -243 ~ -260 ppm/°C. 24,25 Although reported to react with Ag, 24 BiVO₄-based ceramics were found to be chemically compatible with Al and Cu electrodes in our previous work²⁶ which might extend its application in LTCC technology. According to Lv's report,²³ three single phase compounds, $Bi_{17}V_2TiO_{32.5}$, $Bi_4V_{1.5}Ti_{0.5}O_{10.85}$ and $Bi_{13}V_5TiO_{34}$ exist in the Bi_2O_3 – TiO_2 – V_2O_5 ternary system and no single phase compounds were reported in the V_2O_5 - TiO_2 and TiO_2 - $BiVO_4$ binary systems. This indicates that TiO_2 and $BiVO_4$ phases do not react with each other and can co-exist. The absence of single phase compounds in the TiO_2 - $BiVO_4$ binary system suggests that immiscible composites may be fabricated. TiO_2 was reported to have a $\varepsilon_r = 100$ and a $Qf \sim 14,000$ GHz but a TCF > +400 ppm/°C.²⁷ $BiVO_4$ was also reported to possess excellent MW properties (a $\varepsilon_r \sim 68$, a Qf value between 6,500 \sim 8,000 GHz, and a TCF between –243 \sim –260 ppm/°C) and a low sintering temperature about 820 °C. Hence, it attracts us to design novel high permittivity and low sintering temperature composite microwave dielectric ceramics based on the TiO_2 - $BiVO_4$ binary system. In the present work, a series of composite ceramic samples in the TiO_2 -BiVO₄ binary system were designed and prepared via traditional solid state reaction method. Phase composition, microstructure, microwave dielectric properties and infrared reflectivity were investigated. A wide ternary region in the Bi_2O_3 - TiO_2 - V_2O_5 phase diagram was discovered with high ε_r and easily adjustable TCF values. ### II. Experimental Proportionate amounts of reagent-grade starting materials of Bi_2O_3 (> 99 %, Shu-Du Powders Co. Ltd., Chengdu, China), TiO_2 and V_2O_5 (> 99 %, Sinopharm Chemical Reagent Co., Ltd, Shanghai, China) were measured according to the stoichiometric formulations(1-x)BiVO₄-xTiO₂ (x=0.4, 0.50, 0.55 and 0.60). Powders were mixed and milled for 4 h using a planetary mill (Nanjing Machine Factory, Nanjing, China) by setting the running speed at 150 rpm with the zirconia balls (2 mm in diameter) as milling media. The powder mixture was then dried and calcined at 800 °C for 4 h. The calcined powders were ball milled for 5 h with a running speed of 200 rpm to obtain fine powders. Then the powders were pressed into cylinders in a steel die with 5 wt. % PVA binder addition under a uniaxial pressure of 150 MPa. Samples were sintered in the temperature range from 850 °C to 920 °C for 2 h. Room temperature X-ray diffraction (XRD) was performed using a XRD with Cu Kα radiation (Rigaku D/MAX-2400 X-ray diffractometry, Tokyo, Japan). Prior to examination sintered pellets were crushed in a mortar and pestle to powder. Diffraction pattern was obtained between 20 of 10-65° at a step size of 0.02°. To examine the grain morphology, as-fired and fractured surfaces were investigated by scanning electron microscopy (SEM, FEI, Quanta 250 F). The room temperature infrared reflectivity spectra were measured using a Bruker IFS 66v FTIR spectrometer on Infrared beamline station (U4) at National Synchrotron Radiation Lab. (NSRL), China. Dielectric properties at microwave frequency were measured with the $TE_{01\delta}$ dielectric resonator method with a network analyzer (HP 8720 Network Analyzer, Hewlett-Packard) and a temperature chamber (Delta 9023, Delta Design, Poway, CA). The temperature coefficient of resonant frequency TCF (τ_t) was calculated with the following formula: $$TCF(\tau_f) = \frac{f_T - f_{T_0}}{f_{T_0} \times (T - T_0)} \times 10^6 \tag{1}$$ where the f_T and f_{T0} were the TE₀₁₈ resonant frequencies at temperature T and T₀, respectively. #### **III. Results and Discussions** X-ray diffraction patterns of the (1-x)BiVO₄-xTiO₂ (x=0.4, 0.50, 0.55 and 0.60) ceramic samples sintered at their optimal temperatures are presented in Fig. 2. Two sets of peaks corresponding to both rutile TiO₂ and monoclinic scheelite BiVO₄ phases were revealed, indicating that BiVO₄ and TiO₂ coexist at their sintering temperatures, which is consistent with reported data.²³ In the monoclinic BiVO₄ structure, V⁵⁺ ions (0.355 Å) occupy tetrahedral (CN4) sites and may be substituted for by Mo⁶⁺ (0.41 Å), W⁶⁺(0.41 Å), Fe³⁺(0.49 Å) and In³⁺(0.62 Å).²⁸ Ti⁴⁺ has similar ionic radius (0.42 Å in CN4) to that of V⁵⁺ but prefers to remain in octahedral coordination within the rutile structure (note Ti⁴⁺ has a strong octahedral site preference in most structures, such as ABO₃ perovskite²⁹), permitting chemical and structural immiscibility between BiVO₄ and TiO₂. Back-scattering electron images (BEI) of the as-fired and fractured surfaces of $0.45 \text{BiVO}_4\text{-}0.55 \text{TiO}_2$ ceramics sintered at 890 °C for 2 hr and EDS results are shown in Fig. 3. Dense microstructure are revealed and there are two different kinds of grains with white and black contrast. According to EDS analysis, the regions of white and dark contrast are BiVO₄ and TiO₂, respectively. The grain size of BiVO₄ is ~ 5 μ m, which is similar to the reported value, ²⁶ even though the sintering temperature is higher than that of pure BiVO₄ ceramic (840 °C). Usually rutile TiO₂ can be densified at high sintering temperature above 1300 °C and here the grain size remains < 1 μ m. Fractured surfaces corresponded well with as-fired ones and BEI further confirmed the coexistence of BiVO₄ and TiO₂ phases. ε_r , Qf, and TCF as a function of composition and temperature in (1-x)BiVO₄-xTiO₂ are shown in Fig. 4. ε_r of BiVO₄ and TiO₂ are 68 and 104, respectively, at microwave frequencies. Here ε_r increased linearly from 68.5 at x=0.0 to 87.7 at x=0.6. This was accompanied by a commensurate increase in TCF values from – 260 ppm/°C for pure BiVO₄ to + 46 ppm/°C at x=0.6. A near-zero TCF (-8 ppm/°C) was achieved in compositions with x=0.55. Sintering temperature increased from 840 °C for pure BiVO₄ to 890 °C at x = 0.4, after which it remained stable up to x=0.6. In contrast to the linear trends described above for ε_r and TCF values, Qf values exhibited non-linear behavior as a function of x. First Qf increased to \sim 12,290 GHz at x = 0.4 but decreased to 9,500 GHz at x = 0.55. As reported by Alford, ³⁰ the dielectric loss of TiO₂ ceramics doped with divalent and trivalent ions with ionic radii in the range of $0.5 \sim 0.95$ Å can be very low (Q ~17 000) at room temperature, which might be attributed to the prevention of formation of Ti³⁺. In the present work, small amount of V⁵⁺ might hold the Ti site in rutile structure. A series of modifications based on 0.45BiVO₄-0.55TiO₂ composite were designed on the premise that the large difference in sintering temperatures between BiVO₄ and TiO₂ ceramics may cause defects at grain boundaries. 30,31 Therefore, a series of modified rutile structured $Ti_{1-x}(Cu_{1/4}Nb_{3/4})_xO_2 \ (\epsilon_r \sim \ 95, \ Q\mathit{f} \sim \ 35,000 \ \ GHz, \ TCF \ \sim \ + \ 400 \ \ ppm/^oC)^{32} \ \ and$ Ti_{1-x}(Cu_{1/3}Ta_{2/3})_xO₂ materials with low sintering temperatures were chosen to replace pure TiO₂ in the 0.45BiVO₄-0.55TiO₂ composite. Moreover, we have previously shown that Qf of BiVO₄ was improved by substitution on both A and B sites. Hence, Bi(Fe,Mo,V)O₄, (Na,Bi)(Mo,V)O₄ series^{33,34} were chosen to replace pure BiVO₄ in 0.45BiVO₄-0.55TiO₂ composite. In addition, nano-sized TiO₂ (20 nm) particles were also utilized to form composites. The results of these studies are listed in Table I. Despite modification to sintering temperature, properties of the composite end members did not increase as expected and Qf remained between $9,000 \sim 12,330$ GHz. Furthermore, to avoid any possibility of interfacial defects between BiVO₄ and TiO₂ caused during the sintering process, macroscopic composites of well sintered and polished BiVO₄ and TiO₂ ceramics samples bonded with adhesive were also measured. Similar Qf values were obtained suggesting that the unexpected decrease of Qf might not arise from defects during sintering but were intrinsic. It is important to note that for a given sample dimension, the resonant frequency of composites with larger ε_r will be less than those with lower ε_r . Consequently, Qf values for BiVO₄, TiO₂ and 0.45BiVO₄-0.55TiO₂ composite samples were measured at different resonant frequencies. To a first approximation, Qf is considered as a material constant, however, it is well known that³⁵ for different materials Qf values usually change slightly as a function of frequency and this might be the reason of the unexpected decrease in Qf values. Anyway, there is no strong evidence here supporting the intrinsic or extrinsic decrease in BiVO₄-TiO₂ composites when x > 0.4 and this needs further study in detail. The temperature dependence of ε_r and Qf of the $(1-x)BiVO_4$ - $xTiO_2(x=0.4, 0.5)$ and 0.55) are presented in Fig. 4 (c). Temperature stable ε_r = 86 and Qf=9,500 GHz were obtained over a wide temperature range 20 ~ 125 °C, which is illustrating that compensation of TCF was achieved using composites of BiVO₄ and TiO₂. According to Ref,²⁶ BiVO₄ does not react with copper and aluminum at low sintering temperatures and TiO₂ was also reported to be chemically compatible with silver.¹⁸ It is therefore possible that a compatible base metal electrode system could be developed for co-firing with $(1-x)BiVO_4$ - $xTiO_2$ composites. The sintering temperatures and microwave dielectric properties of some high ε_r microwave dielectric ceramics are listed in Table II for comparison³⁴⁻³⁶ with the composites fabricated in this study. The $(1-x)BiVO_4$ - $xTiO_2$ composites possess both low sintering temperatures and good microwave dielectric properties. Therefore, based on the data shown in Fig. 1 (b), a series of temperature stable microwave dielectric ceramics might be achievable in the Bi₂O₃-TiO₂-V₂O₅ ternary system along the composition line (0.88TiO₂-0.12Bi₂Ti₄O₁₁)-(0.45BiVO₄-0.55TiO₂). Besides LTCC technology with suitable electrode, such materials also have great potential for dielectric substrates in ultra-small dielectrically-loaded micro-strip patch antennas. The current generation of substrates utilize compositions based on BRET, 36-38 which have sintering temperatures above 1300 °C. Moreover, BRET compositions with comparable ε_r (86.2) have lower Qf than that of the composites described in this contribution. BiVO₄-TiO₂ composites therefore offer a low sintering temperature, RE-free, and high Qf alternative to BRET. To further study the intrinsic microwave dielectric properties, infrared reflectivity spectra of the 0.45BiVO₄-0.55TiO₂ ceramic were analyzed using a classical harmonic oscillator model: Published on 10 May 2016. Downloaded by University of Wollongong on 15/05/2016 03:35:48. $$\varepsilon^*(\omega) = \varepsilon_{\infty} + \sum_{i=1}^n \frac{\omega_{pj}^2}{\omega_{0i}^2 - \omega^2 - j\gamma_i \omega},$$ (2) where $\varepsilon^*(\omega)$ is complex dielectric function, ε_{∞} is the dielectric constant caused by the electronic polarization at high frequencies, γ_j , ω_{oj} , and ω_{pj} are the damping factor, the transverse frequency, and plasma frequency of the j-th Lorentz oscillator, respectively, and n is the number of transverse phonon modes. ε_{∞} is the dielectric constant caused by the electronic displacive polarization at optical frequency. Assuming that within the microwave region $\omega << \omega_{oj}$, the real part and imaginary part of microwave permittivity can be written as: $$\varepsilon'(\omega) = \varepsilon_{\infty} + \sum_{j=1}^{n} \Delta \varepsilon_{j}' = \varepsilon_{\infty} + \sum_{j=1}^{n} \frac{\omega_{pj}^{2}}{\omega_{oj}^{2}},$$ (3) $$\varepsilon''(\omega) = \sum_{j=1}^{n} \frac{\gamma_j \omega_{pj}^2}{\omega_{oj}^2} \omega, \tag{4}$$ and the complex reflectivity $R(\omega)$ can be written as: $$R(\omega) = \left| \frac{1 - \sqrt{\varepsilon^*(\omega)}}{1 + \sqrt{\varepsilon^*(\omega)}} \right|^2. \tag{5}$$ Fitted infrared reflectivity values, complex permittivities and phonon parameters are shown in Fig. 5 and Table III. The calculated ε_r and dielectric loss values match well those measured using $TE_{01\delta}$ method, which implies that the majority of the dielectric contribution to this system at microwave frequencies may be attributed to the absorptions of structural phonon oscillations in the infrared region and very little contribution was from defect phonon scattering. The optical dielectric constant calculated from the infrared spectra is about 5.87, which is only7 % percent of the total polarizability contribution at microwave frequencies, and this implies that the main polarization contributions to microwave permittivity of high ε_r materials come from ionic polarization rather than electronic. Contributions from each mode is listed as $\Delta \varepsilon_j$ in Table III. The contributions from the first four modes, which are below 200 cm⁻¹, can reach 70.15 and about 85% of the total value, which means that the stretching of Bi-O and Ti-O bond lengths determine the main dielectric polarization rather than bending modes. This conclusion corresponds well with our previous studies.^{2,33} #### IV. Conclusions In the present work, temperature stable high ε_r microwave dielectric ceramics were explored in the Bi₂O₃-TiO₂-V₂O₅ ternary system. The 0.45BiVO₄-0.55TiO₂ ceramics sintered at 900 °C for 2 h possessed excellent microwave dielectric properties with a $\varepsilon_r \sim 86$, a Qf $\sim 9,500$ GHz and a near-zero TCF ~ -8 ppm/°C. These composite ceramics were composed of both scheelite-structured BiVO₄ (with large negative TCF) and rutile TiO₂ (with large positive TCF), which was supported both by the XRD and EDS analysis. Far-infrared reflectivity fitting indicated that stretching of the Bi-O and Ti-O bonds in this system dominate the dielectric polarization. Therefore, along with the TiO₂-Bi₂Ti₄O₁₁ system, the Bi₂O₃-TiO₂-V₂O₅ ternary system presents a wide compositional region with easily adjustable ε_r and TCF that can be fabricated by a traditional solid state reaction method at 900°C. The materials therefore have great potential for exploitation both in LTCC technology and ultra-small, dielectrically-loaded micro-strip patch antennas applications with RE-free composition, lower sintering temperature, and higher Qf alternative to BRET materials. ## Acknowledgements This work was supported by the Young Star Project of Science and Technology of Shaanxi Province (S2016YFXX0029), the Fundamental Research Funds for the Central University, Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology), P.R. China (Project No. 161004-K), and the 111 Project of China (B14040). The authors would like to thank the administrators in IR beamline workstation of National Synchrotron Radiation Laboratory (NSRL) for their help, especially Prof. Dr. Ze-Ming Qi, in the IR measurement and fitting. The BEI work was done at International Center for Dielectric Research (ICDR), Xi'an Jiaotong University, Xi'an, China and the authors thank Ms. Yan-Zhu Dai for her help in using BEI. The authors also thank Prof. Dr. Guo-Hua Chen from Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology for his helpful discussion on the manuscript. #### References - 1 I. M. Reaney, D. Iddles, J. Am. Ceram. Soc., 2006, **89**, 2063. - 2 D. Zhou, L. X. Pang, J. Guo, Z. M. Qi, T. Shao, Q. P. Wang, H. D. Xie, X. Yao, C. A. Randall, *Inorg. Chem.*, 2014, **53**, 1048. - 3 M. T. Sebastian, H. Jantunen, *Int. Mater. Rev.*, 2008, **53**, 57. - 4 D. Zhou, L. X. Pang, Z. M. Qi, B. B. Jin, X. Yao, Sci. Rep., 2014, 4, 5980. - 5 Ferro, http://www.ferro.com/. - 6 Dupont, http://www.dupont.com/. - 7 D. Zhou, C. Randall, H. Wang, L. X. Pang, X. Yao, *J. Am. Ceram. Soc.*, 2010, **93**, 1096. - 8 L. X. Pang, D. Zhou, J. Am. Ceram. Soc., 2010, 93, 3614. - 9 H. Ohsato, T. Ohhashi, S. Nishigaki, T. Okuda, K. Sumiya, S. Suzuki, *Jpn. J. Appl. Phys.*, 1993, 32, 4323. - 10 N. Qin, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc., 2007, 90, 2912. - 11 I. Kagomiya, M. Suzuki, K. Kakimoto, H. Ohsato, J. Eur. Ceram. Soc., 2007, 27, 3059. - 12 L. X. Pang, H. Wang, D. Zhou, W. H. Liu, *Mater. Chem. Phys.*, 2010, **123**, 727. - 13 K. Fukuda, R. Kitoh, I. Awai, Jpn. J. Appl. Phys., 1993, 32, 4584. - 14 A. K. Axelsson, M. Sebastian, N. M. Alford, J. Korean Ceram. Soc., 2003, 40, 340. - 15 E. I. Speranskaya, I. S. Rez, L. V. Kozlova, V. M. Skorikov, V. I. Slavov, *Izv. Akad. Inorg. Mater. (Engl. Transl.)*, 1965, **1**, 213. - 16 J. R. Esquivel-Elizondo, B. B. Hinojosa, J. C. Nino, *Chem. Mater.*, 2011, 23, 4965. - 17 L. X. Pang, H. Wang, D. Zhou, J. Mater. Sci. Mater. Electro., 2010, 21, 1285. - 18 A. K. Axelsson, N. M. Alford, J. Eur. Ceram. Soc., 2006, 26, 1933. - 19 M. Valant, D. Suvorov, J. Am. Ceram. Soc., 2001, 84, 2900. - 20 B. J. Jeong, M. R. Joung, J. S. Kim, S. Nahm, J. W. Choi, J. Am. Ceram. Soc., 2013, 96, 3742. - 21 Y. Zhang, Y. C. Zhang, B. Fu, M. Hong, M. Xiang, Z. Liu, H. Liu, S. Liu, *J. Mater. Sci.: Mater. Electro.*, 2015, **26**, 3179. - 22 M. Touboul, C. Vachon, *Thermochim. Acta*, 1988, 133, 61. - 23 P. W. Lv, M. Zheng, X. Wang, F. Huang, J. Alloy. Compd., 2014, 583, 285. - 24 M. Valant, D. Suvorov, J. Am. Ceram. Soc., 2000, 83, 2721. - 25 S. H. Wee, D. W. Kim, S. I. Yoo, *J. Am. Ceram. Soc.*, 2004, **87**, 871. - 26 D. Zhou, C. A. Randall, H. Wang, L. X. Pang, X. Yao, J. Am. Ceram. Soc., 2010, 93, 2147. - 27 J. H. Noh, H. S. Jung, J. K. Lee, J. R. Kim, K. S. Hong, *J. Eur. Ceram. Soc.*, 2007, **27**, 2937. - 28 R. D. Shannon, Acta Cryst., 1976, A32, 751. - 29 W. Jauch, A. Palmer, *Phys. Rev. B*, 1999, **60**, 2961. - 30 A. Templeton, X. Wang, S. J. Penn, S. J. Webb, L. F. Cohen, N. McN. Alford, *J. Am. Ceram. Soc.*, 2000, **83**, 95. - 31 R. C. Pullar, S. J. Penn, X. Wang, I. M. Reaney, N. McN. Alford, *J. Eur. Ceram. Soc.*, 2009, **29**, 419. - 32 L. X. Pang, H. Wang, D. Zhou, X. Yao, J. Electroceram., 2009, 23, 13. - 33 D. Zhou, L. X. Pang, H. Wang, J. Guo, X. Yao, C. A. Randall, *J. Mater. Chem.*, 2011, **21**, 18412. - 34 D. Zhou, L. X. Pang, J. Guo, Z. M. Qi, T. Shao, X. Yao, C. A. Randall, *J. Mater. Chem.*, 2012, **22**, 21412. - 35 L. Li, X. M. Chen, J. Am. Ceram. Soc., 2014, 97, 3041. 36 H. Ohsato, M. Imaeda, Y. Takagi, A. Komura, T. Okuda, *In Proc. 11th IEEE Int. Symp. On Applications of Ferroelectrics* 1998, **IEEE catalog number 98CH36245**, 509. 37 H. Ohsato, S. Nishigaki, T. Okuda, Jpn. J. Appl. Phys., 1992, 31, 3136. 38 H. Takahashi, Y. Baba, K. Ezaki, Jpn. J. Appl. Phys., 1996, 35, 5069. # **Table Captions:** Published on 10 May 2016. Downloaded by University of Wollongong on 15/05/2016 03:35:48. Table I. Microwave dielectric properties of some modifications of 0.45BiVO₄-0.55TiO₂ ceramics Table II. Sintering temperatures (S.T.) and microwave dielectric properties of high-K microwave dielectric ceramics Table III. Phonon parameters obtained from the fitting of the infrared reflectivity spectra of 0.45BiVO₄-0.55TiO₂ceramic Table I. Microwave dielectric properties of some modifications of $0.45 BiVO_4 - 0.55 TiO_2$ ceramics | Compositions | S.T. | $\epsilon_{\rm r}$ | Qf | TCF | |-------------------------------------------------------|-------|--------------------|--------|----------| | | (°C) | | (GHz) | (ppm/°C) | | 0.45Bi(Fe,Mo,V)O ₄ -0.55TiO ₂ | 880 | 74.8 | 9,300 | +22 | | Bi(Fe,Mo,V)O ₄ -TiO ₂ | stack | 75.4 | 9,240 | +18 | | 0.45(Na,Bi)(Mo,V)O ₄ -0.55TiO ₂ | 870 | 83.8 | 8,300 | +15 | | $0.45 BiVO_{4}$ - 0.55 | 870 | 79.8 | 12,330 | -65 | | $Ti_{1-x}(Cu_{1/4}Nb_{3/4})_xO_2(x=0.15)$ | | | | | | 0.45BiVO ₄ -0.55 | 890 | 78.7 | 10,240 | -46 | | $Ti_{1-x}(Cu_{1/4}Ta_{3/4})_xO_2(x=0.15)$ | | | | | | $0.45 BiVO_4\text{-}0.55 TiO_2 (nano\sim 20 \mu m)$ | 870 | 80.5 | 9,500 | +10 | | $0.45 \mathrm{BiVO_4} - 0.55 \mathrm{TiO_2}$ | 900 | 86.2 | 9,500 | -8 | | | | | | | Table II. Sintering temperatures (S.T.) and microwave dielectric properties of high-K microwave dielectric ceramics | Compositions | S.T. | $\epsilon_{\rm r}$ | Qf | TCF | Ref. | |------------------------------------------------------------------------------|-------|--------------------|-------------|----------|-----------| | | (°C) | | (GHz) | (ppm/°C) | | | BiVO ₄ | 820 | 68 | 8,500 | -260 | 24,25 | | $0.88 TiO_2 - 0.12 Bi_2 Ti_4 O_{11}$ | >1150 | 81 | 6,500~8,500 | +8~15 | 13,14,17 | | TiO ₂ (nano)-Bi ₂ Ti ₄ O ₁₁ -CuO | 915 | 80 | 9,500 | 0 | 19 | | $Ba_{6-x}Sm_{8+2x}Ti_{18}O_{54}$ (x=2/3) | 1400 | 80 | 10,700 | -15 | 31 | | $Ba_{6-x}(Sm,Nd)_{8+2x}Ti_{18}O_{54}$ | 1350 | 78.9 | 9,060 | -5.3 | 36 | | TiO ₂ -Bi ₂ Ti ₄ O ₁₁ -CuO | 900 | 81.5 | 3,500 | -5.1 | 18 | | Bi(Fe,Mo,V)O ₄ | 820 | 74.8 | 13,000 | +20 | 30 | | (Li,Bi)(MoV)O ₄ | 650 | 81 | 8,000 | -90~+9.7 | 26 | | 0.5BiVO ₄ -0.5TiO ₂ | 900 | 85.6 | 11,650 | -55 | This work | | $0.45 BiVO_4 - 0.55 TiO_2$ | 900 | 86.2 | 9,500 | -8 | This work | | 0.45BiVO ₄ -0.55TiO ₂ (nano) | 870 | 80.5 | 9,500 | +10 | This work | | 0.4BiVO ₄ -0.6TiO ₂ | 900 | 87.7 | 8,240 | +46 | This work | | TiO ₂ | 1300 | 100 | 20,000 | +400 | 13 | | CaO-Li ₂ O-Ln ₂ O ₃ -TiO ₂ | 1400 | 110 | 4,500 | +7 | 38 | | Mode | ω_{oj} | ω_{pj} | γ_j | $\Delta oldsymbol{arepsilon}_j$ | |------------------------------------------------|---------------|---------------|-----------------------|---------------------------------| | 1 | 82.52 | 412.86 | 23.27 | 25.0 | | 2 | 109.60 | 607.09 | 44.64 | 30.7 | | 3 | 145.62 | 483.00 | 43.22 | 11.0 | | 4 | 177.53 | 329.58 | 42.45 | 3.45 | | 5 | 255.28 | 263.79 | 53.14 | 1.07 | | 6 | 273.07 | 126.68 | 17.50 | 0.22 | | 7 | 310.41 | 289.19 | 43.68 | 0.87 | | 8 | 346.43 | 224.05 | 35.31 | 0.42 | | 9 | 400.66 | 344.27 | 57.39 | 0.74 | | 10 | 535.28 | 559.14 | 102.07 | 1.09 | | 11 | 632.53 | 821.63 | 106.98 | 1.69 | | 12 | 675.01 | 610.32 | 108.10 | 0.82 | | 0.45BiVO ₄
-0.55TiO ₂ | ε∞=5.87 | | ε_0 =82.2 | | # **Figure Captions:** - **Fig. 1.** Schematic of phase diagram of the Bi₂O₃-TiO₂-V₂O₅ binary system after Touboul and Lv's reports (a)^{22,23} and a promising region for temperature stable microwave dielectrics (b) - **Fig. 2.** X-ray diffraction patterns of the (1-x)BiVO₄-xTiO₂ (x=0.4, 0.50, 0.55 and 0.60) ceramic samples sintered at their optimal temperatures (o—rutile phase; *—scheelite). - **Fig. 3.** Back-scattered electron images of the as-fired (a) and fractured (b) surfaces of the 0.45BiVO₄-0.55TiO₂ ceramics sintered 2h at 890 °C (The associated energy dispersive X-ray spectrum is inserted) - **Fig. 4.** Microwave ε_r and Qf(a), sintering temperature and TCF (b) as a function of x in the $(1-x)BiVO_4$ - $xTiO_2$ compositions and their temperature dependence (c). - **Fig. 5.** Measured and calculated infrared reflectivity spectra (solid line for fitting values and circle for measured values) and fitted complex dielectric spectra of 0.45BiVO₄-0.55TiO₂ ceramic (circles are experimental in microwave region). Fig. 1. Schematic of phase diagram of Bi2O3-TiO2-V2O5binary system after Touboul and Lv'(a) [22, 23] and a promising region for temperature stable microwave dielectrics (b) 84x72mm (300 x 300 DPI) Fig. 1. Schematic of phase diagram of Bi2O3-TiO2-V2O5binary system after Touboul and Lv'(a) [22, 23] and a promising region for temperature stable microwave dielectrics (b) 84x50mm (300 x 300 DPI) Fig. 2. X-ray diffraction patterns of the (1-x)BiVO4-xTiO2 (x=0.4, 0.50, 0.55 and 0.60) ceramic samples sintered at their optimal temperatures (o—rutile phase; *—scheelite). 87x72mm (600 x 600 DPI) Fig. 3. Back-scattered electron images of the as-fired (a) and fractured (b) surfaces of 0.45BiVO4-0.55TiO2 ceramics sintered 2h at 890 oC. The associated energy dispersiveX-ray spectrum is inserted. 84x73mm (300 x 300 DPI) Fig. 3. Back-scattered electron images of the as-fired (a) and fractured (b) surfaces of 0.45BiVO4-0.55TiO2 ceramics sintered 2h at 890 oC. The associated energy dispersiveX-ray spectrum is inserted. 84x72mm (300 x 300 DPI) Fig. 4. Microwave ϵr and Qf (a), sintering temperature and TCF (b) as a function of x in (1-x)BiVO4-xTiO2 compositions and their temperature dependence (c). 95x66mm (600 x 600 DPI) Fig. 4. Microwave ϵ r and Qf (a), sintering temperature and TCF (b) as a function of x in (1-x)BiVO4-xTiO2 compositions and their temperature dependence (c). 95x66mm (600 x 600 DPI) Fig. 4. Microwave ϵr and Qf (a), sintering temperature and TCF (b) as a function of x in (1-x)BiVO4-xTiO2 compositions and their temperature dependence (c). 95x66mm (600 x 600 DPI) Fig. 5. Measured and calculated infrared reflectivity spectra (solid line for fitting values and circle for measured values) and fitted complex dielectric spectra of 0.45BiVO4-0.55TiO2 ceramic (circles are experimental in microwave region). $63x44mm \; (600 \times 600 \; DPI)$ Temperature stable microwave dielectric ceramics were obtained for compositions with 0.45BiVO_4 - 0.55TiO_2 sintered at 900 °C with $\varepsilon_r \sim 86$, a Qf $\sim 9,500$ GHz and TCF ~ -8 ppm/°C. It is promising for both low temperature co-fired ceramic technology and dielectrically loaded micro-strip patch antennas substrates. Far-infrared reflectivity fitting indicated that stretching of Bi-O dominated dielectric polarization.